. Bourtzis, , 2016.

. Dicko, , 2014.

. Vreysen, , 2000.

. Walshe, , 2009.

. Whyard, , 2015.

, Alphey, 2014.

. Bourtzis, , 2016.

. Gantz, , 2015.

. Hammond, Haut Conseil des Biotechnologies, 2016.

. O'brochta, , 1981.

W. Enkerlin, J. M. Gutiérrez-ruelas, A. V. Cortes, E. C. Roldan, D. Midgarden et al., Area freedom in Mexico from mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach, Florida Entomol, vol.98, pp.665-681, 2015.

K. M. Esvelt, A. L. Smidler, C. F. Church, and G. M. , Concerning RNA-guided gene drives for the alteration of wild populations, Elife, vol.3, p.3401, 2014.

, Glossaire des termes phytosanitaires NIMP 5. FAO, 2015.

F. D. Frentiu, T. Zakir, T. Walker, J. Popovici, A. T. Pyke et al., Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Negl Trop Dis, vol.8, p.2688, 2014.

M. Fried, Determination of sterile-insect competitiveness, J Econ Entomol, vol.64, pp.869-872, 1971.

R. Galizi, L. A. Doyle, M. Menichelli, F. Bernardini, A. Deredec et al., A synthetic sex ratio distortion system for the control of the human malaria mosquito, Nature Com, vol.5, p.3977, 2014.

R. Galizi, A. Hammond, K. Kyrou, C. Taxiarchi, F. Bernardini et al., A CRISPR-Cas9 sex-ratio distortion system for genetic control, Sci Rep, vol.6, p.31139, 2016.

V. M. Gantz, N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias et al., Highly efficient Cas9mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc Natl Acad Sci, vol.112, pp.6736-6743, 2015.

A. B. Hall, S. Basu, X. Jiang, Y. Qi, V. A. Timoshevskiy et al., A male-determining factor in the mosquito Aedes aegypti, Science, vol.348, pp.1268-1270, 2015.

A. Hammond, R. Galizi, K. Kyrou, A. Simoni, C. Siniscalchi et al., A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nature Biotech, vol.34, pp.78-83, 2016.

A. F. Harris, D. D. Nimmo, A. R. Mckemey, N. Kelly, S. Scaife et al., Field performance of engineered male mosquitoes, Nature Biotech, vol.29, pp.1034-1037, 2011.

A. Hochkirch, J. Beninde, M. Fischer, A. Krahner, C. Lindemann et al., Avis du Comité Scientifique en réponse à la saisine du 12 octobre 2015 concernant l'utilisation de moustiques génétiquement modifiés dans le cadre de la lutte antivectorielle, Haut Conseil des Biotechnologies, vol.11, p.12370, 2017.

A. A. Hoffmann, I. Iturbe-ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington et al., Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Negl Trop Dis, vol.8, p.3115, 2014.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, pp.454-457, 2011.

S. James, F. H. Collins, P. A. Welkhoff, C. Emerson, H. Godfray et al., Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a Scientific Working Group, Am J Trop Med Hyg, vol.98, issue.6, pp.1-49, 2018.

L. Klasson, Z. Kambris, P. E. Cook, W. T. Sinkins, and S. P. , Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti, BMC Genomics, vol.10, p.1, 2009.

E. Krzywinska, N. J. Dennison, G. J. Lycett, and J. Krzywinski, A maleness gene in the malaria mosquito Anopheles gambiae, Science, vol.353, pp.67-69, 2016.

A. Kumar, S. Wang, R. Ou, M. Samrakandi, B. T. Beerntsen et al., Development of an RNAi based microalgal larvicide to control mosquitoes, Malaria World J, vol.4, pp.1-7, 2013.

R. Lacroix, A. R. Mckemey, N. Raduan, L. K. Wee, W. H. Ming et al., Open field release of genetically engineered sterile male Aedes aegypti in Malaysia, PLoS ONE, vol.7, p.42771, 2012.

, Pests and vector-borne diseases in the livestock industry, vol.6, 2018.

J. Bouyer, E. M. Loreto, E. Wallau, and G. L. , Risks of Wolbachia mosquito control, Science, vol.351, p.1273, 2016.

E. Loreto and G. L. Wallau, Risks of Wolbachia mosquito control, Science, vol.351, pp.1273-1273, 2016.

M. V. Mancini, R. Spaccapelo, C. Damiani, A. Accoti, M. Tallarita et al., Paratransgenesis to control malaria vectors: a semi-field pilot study, Parasite Vectors, vol.9, p.1, 2016.

J. Mcbeath, An industry perspective on the development of new insecticide-based tools for vector control, International Society for Neglected Tropical Diseases-ISNTD Bites, 2015.

E. A. Mcgraw and O. Sl, Beyond insecticides: new thinking on an ancient problem, Nature Reviews Microbiology, vol.11, pp.181-193, 2013.

R. L. Mubarqui, R. C. Perez, A. Kladt, R. , Z. Lopez et al., Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment, Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values, vol.9, p.1797, 2012.

O. Sl, Wolbachia mosquito control: tested, Science, vol.352, pp.526-526, 2016.

O. Brochta, D. A. , A. Pw, and M. J. Lehane, Transformation of Stomoxys calcitrans with a Hermes gene vector, Insect Mol Bio, vol.9, pp.531-538, 2000.

S. Pagabeleguem, M. T. Seck, B. Sall, M. Vreysen, G. Gimonneau et al., Long distance transport of irradiated male Glossina palpalis gambiensis pupae and its impact on sterile male yield, Parasite Vectors, vol.8, p.259, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245975

R. S. Patterson, G. C. Labrecque, W. Df, and D. E. Weidhaas, using integrated pest management measures: III. Field techniques and population control, Control of the stable fly, Stomoxys Calcitrans (Diptera: Muscidae), vol.18, pp.203-210, 1981.

H. K. Phuc, M. H. Andreasen, R. S. Burton, C. Vass, M. J. Epton et al., Late-acting dominant lethal genetic systems and mosquito control, BMC Biol, vol.5, p.1, 2007.

H. Ranson, N. 'guessan, R. Lines, J. Moiroux, N. Nkuni et al., Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?, Trends Parasitol, vol.27, pp.91-98, 2011.

G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. C. Finarelli et al., Infection with chikungunya virus in Italy: an outbreak in a temperate region, Lancet, vol.370, pp.1840-1846, 2007.

M. T. Seck, J. Bouyer, B. Sall, Z. Bengaly, and M. Vreysen, The prevalence of African animal trypanosomoses and tsetse presence in western Senegal, Parasite, vol.17, pp.257-265, 2010.

M. T. Seck, S. Pagabeleguem, M. D. Bassene, A. G. Fall, T. Diouf et al., Quality of sterile male tsetse after long distance transport as chilled, irradiated pupae, PLoS Negl Trop Dis, vol.9, p.4229, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594146

K. Servick, Brazil will release billions of lab-grown mosquitoes to combat infectious disease. Will it work?, Science, 2016.

P. Solano, D. Kaba, S. Ravel, N. Dyer, B. Sall et al., Tsetse population genetics as a tool to choose between suppression and elimination: the case of the Niayes area in Senegal, PLoS Trop Negl Dis, vol.4, p.692, 2010.

A. Sow, I. Sidibé, Z. Bengaly, Z. Bancé, G. J. Sawadogo et al., Irradiated male Glossina palpalis gambiensis (Diptera: Glossinidae) from a 40-years old colony are still competitive in a riparian forest in Burkina Faso, PLoS ONE, vol.7, p.37124, 2012.

D. M. Suckling, L. D. Stringer, A. E. Stephens, B. Woods, D. G. Williams et al., From integrated pest management to integrated pest eradication: technologies and future needs, Pest Manag Sci, vol.70, pp.179-189, 2014.

R. L. Unckless, A. G. Clark, and P. W. Messer, Evolution of resistance against CRISPR/Cas9 gene drive, Genetics, vol.205, pp.827-841, 2017.

M. Vargas-terán, H. Bs, and E. P. Cunningham, Eradication of the screwworm from Libya using the sterile insect technique, Parasitol Today, vol.10, pp.119-122, 1994.

, , vol.6, 2018.

M. Vreysen, K. M. Saleh, M. Y. Ali, A. M. Abdulla, Z. Zhu et al., Glossina austeni (Diptera: Glossinidae) Eradicated on the island of Unguja, Zanzibar, using the sterile insect technique, J Econ Entomol, vol.93, pp.123-135, 2000.

M. Vreysen, K. M. Saleh, L. R. Bouyer, and J. , Factory tsetse flies must behave like wild flies: a prerequisite for the sterile insect technique, PLoS Trop Negl Dis, vol.5, issue.2, p.907, 2011.

M. Vreysen, M. T. Seck, B. Sall, A. G. Mbaye, M. Bassene et al., Eradication of Glossina palpalis gambiensis from the Niayes area of Senegal: a review of operational research in support of a phased conditional approach, Area-wide integrated pest management: development and field application

D. P. Walshe, S. M. Lehane, M. J. Lehane, and L. R. Haines, Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA, Insect Mol Biol, vol.18, pp.11-19, 2009.

S. Whyard, C. N. Erdelyan, A. L. Partridge, A. D. Singh, N. W. Beebe et al., Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs, Parasit Vectors, vol.8, p.96, 2015.

N. Windbichler, M. Menichelli, P. A. Papathanos, S. B. Thyme, H. Li et al., A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, vol.473, pp.212-215, 2011.

M. Woolfit, I. Iturbe-ormaetxe, E. A. Mcgraw, and O. Sl, An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis, Mol Biol Evol, vol.26, pp.367-374, 2009.

J. H. Wyss, Screwworm eradication in the Americas, Ann NY Acad Sci, vol.916, pp.186-193, 2006.

D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, and J. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS ONE, vol.10, p.121126, 2015.