, Lead poisoning and health, 2018.

T. A. Jusko, C. R. Henderson, B. P. Lanphear, D. A. Cory-slechta, and P. Parsons,

J. Canfield and R. L. , Blood lead concentrations < 10 ?g/dL and child intelligence at 6 years of age. Environ Health Perspect, vol.116, pp.243-248, 2007.

A. Schultz, R. Puvvadi, S. M. Borisov, N. C. Shaw, I. Klimant et al., Airway surface liquid pH is not acidic in children with cystic fibrosis, Nat Commun, vol.8, p.1409, 2017.

D. I. Bannon, J. W. Drexler, G. M. Fent, S. W. Casteel, P. J. Hunter et al., Evaluation of small arms range soils for metal contamination and lead bioavailability, Environ Sci Technol, vol.43, pp.9071-9076, 2009.

G. Kanapilly, O. Raabe, C. Goh, and R. Chimenti, Measurement of in vitro dissolution of aerosol particles for comparison to in vivo dissolution in the lower respiratory tract after inhalation, Health Phys, vol.24, pp.497-507, 1973.

A. Nemmar, J. A. Holme, I. Rosas, P. E. Schwarze, and E. Alfaro-moreno, Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies, BioMed Res Int, pp.1-22, 2013.

B. Asgharian, M. Menache, and F. Miller, Modeling age-related particle deposition in humans, J Aerosol Med, vol.17, pp.213-224, 2004.

J. Rissler, A. Gudmundsson, H. Nicklasson, E. Swietlicki, P. Wollmer et al., Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults, Part Fibre toxicol, vol.14, p.10, 2017.

G. M. Hettiarachchi and G. M. Pierzynski, Soil lead bioavailability and in situ remediation of lead contaminated soils: A review, vol.23, pp.78-93, 2004.

E. Mele, E. Donner, A. L. Juhasz, G. Brunetti, E. Smith et al., In situ fixation of metal (loid) s in contaminated soils: a comparison of conventional, opportunistic, and engineered soil amendments, Environ Sci Technol, vol.49, pp.13501-13509, 2015.

M. Maddaloni, N. Lolacono, W. Manton, C. Blum, J. Drexler et al., Bioavailability of soilborne lead in adults, by stable isotope dilution. Environ Health Persp, vol.106, p.1589, 1998.

K. D. Bradham, G. L. Diamond, C. M. Nelson, M. Noerpel, K. G. Scheckel et al., Long term in situ reduction in soil lead bioavailability measured in the mouse model, Environ Sci Technol, vol.52, pp.13908-13913, 2018.

G. M. Fent, T. J. Evans, D. I. Bannon, and S. W. Casteel, Lead distribution in rats following respiratory exposure to lead-contaminated soils, Toxicol Environ Chem, vol.90, pp.971-982, 2008.

F. Boreland and D. Lyle, Lead dust in Broken Hill homes: Effect of remediation on indoor lead levels, Environ Res, vol.100, pp.276-283, 2006.

F. Boreland, D. Lyle, J. Wlodarczyk, W. Balding, and S. Reddan, Lead dust in Broken Hill homes-a potential hazard for young children?, Aust N Z J Public Health, 2002.

F. Kastury, E. Smith, R. R. Karna, K. G. Scheckel, and A. Juhasz, An inhalationingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM10, Sci Total Environ, vol.631, pp.92-104, 2018.

I. M. El-sherbiny, N. M. El-baz, and M. H. Yacoub, Inhaled nano-and microparticles for drug delivery, Global Cardiol Sci Pract, vol.2, pp.1-14, 2015.

F. Kastury, E. Smith, and A. L. Juhasz, A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal (loid) s from ambient particulate matter or dust, Sci Total Environ, vol.574, pp.1054-1074, 2017.

M. Bailey, E. Ansoborlo, R. Guilmette, and F. Paquet, Updating the ICRP human respiratory tract model, Radiat Prot Dosimetry, vol.127, pp.31-34, 2007.

J. G. Wallenborn, K. D. Kovalcik, J. K. Mcgee, M. S. Landis, and U. P. Kodavanti, Systemic translocation of 70 zinc: kinetics following intratracheal instillation in rats

, Toxicol Appl Pharmacol, vol.234, pp.25-32, 2009.

R. Solomon, The Richest Lode: Broken Hill, 1983.

&. Hale and . Iremonger, , 1988.

K. Yang and S. R. Cattle, Bioaccessibility of lead in urban soil of Broken Hill, Australia: a study based on in vitro digestion and the IEUBK model, Sci Total Environ, vol.538, pp.922-933, 2015.

K. Yang and S. R. Cattle, Effectiveness of cracker dust as a capping material for Pb-rich soil in the mining town of Broken Hill, vol.148, pp.81-91, 2017.

, USEPA: Microwave assissted acid digestion of sediments, slidges, soils, and oils

, EPA: Method 6020A (SW-846): Inductively Coupled Plasma-Mass Spectrometry, Revision 1, 1998.

A. L. Juhasz, D. Gancarz, C. Herde, S. Mcclure, K. G. Scheckel et al., In situ formation of pyromorphite is not required for the reduction of in vivo Pb relative bioavailability in contaminated soils, Environ Sci Technol, vol.48, pp.7002-7009, 2014.

M. E. Kelley, S. Brauning, R. Schoof, and M. Ruby, Assessing oral bioavailability of metals in soil, 2002.

B. Berlinger, D. G. Ellingsen, M. Náray, G. Záray, and Y. Thomassen, A study of the bio-accessibility of welding fumes, J Environ Monitor, vol.10, pp.1448-1453, 2008.

A. Kropf, J. Katsoudas, S. Chattopadhyay, T. Shibata, E. Lang et al., The new MRCAT (Sector 10) bending magnet beamline at the advanced photon source, AIP Conference Proceedings

, AIP, pp.299-302, 1234.

J. D. Clark, G. F. Gebhart, J. C. Gonder, M. E. Keeling, and D. F. Kohn, The 1996 guide for the care and use of laboratory animals, ILAR J, vol.38, pp.41-48, 1997.

E. Smith, I. M. Kempson, A. L. Juhasz, J. Weber, A. Rofe et al., In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils, Environ Sci Technol, p.61456152, 2011.

A. Technologies, Determination of heavy metals in whole blood by ICP-MS. Agilent Technologies Publication Number 5988-0533EN, 2006.

P. Cmielewski, N. Farrow, S. Devereux, D. Parsons, and M. Donnelley, Gene therapy for Cystic Fibrosis: Improved delivery techniques and conditioning with lysophosphatidylcholine enhance lentiviral gene transfer in mouse lung airways, Exp Lung Res, vol.43, pp.426-433, 2017.

C. J. Ollson, E. Smith, P. Herde, and A. L. Juhasz, Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead, vol.168, pp.658-666, 2017.

B. E. Etschmann, E. Donner, J. Brugger, D. L. Howard, M. D. De-jonge et al., Speciation mapping of environmental samples using XANES imaging, Environ Chem, vol.11, pp.341-350, 2014.

B. Gulson, K. Mizon, A. Taylor, and M. Wu, Dietary zinc, calcium and nickel are associated with lower childhood blood lead levels, Environ Res, 2018.

K. Kordas, R. Burganowski, A. Roy, F. Peregalli, V. Baccino et al., Nutritional status and diet as predictors of children's lead concentrations in blood and urine, Environ Int, vol.111, pp.43-51, 2018.

J. Calderon, M. E. Navarro, M. E. Jimenez-capdeville, M. A. Santos-diaz, A. Golden et al., Exposure to arsenic and lead and neuropsychological development in Mexican children, Environ Res, vol.85, pp.69-76, 2001.

I. Adamson, H. Prieditis, C. Hedgecock, and R. Vincent, Zinc is the toxic factor in the lung response to an atmospheric particulate sample, Toxicol Appl Pharmacol, vol.166, p.111119, 2000.

I. R. Sneddon, M. Orueetxebarria, M. E. Hodson, P. F. Schofield, and E. Valsami-jones, Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium, Appl Geochem, vol.23, pp.2414-2424, 2008.

S. Brown, R. Chaney, J. Hallfrisch, J. A. Ryan, and W. R. Berti, In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium, J Environ Qual, vol.33, pp.522-553, 2004.

P. Zhang and J. A. Ryan, Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions, Environ Sci Technol, vol.32, pp.3318-3324, 1998.

C. M. Carosino, K. J. Bein, L. E. Plummer, A. R. Castañeda, Y. Zhao et al., Allergic airway inflammation is differentially exacerbated by daytime and nighttime ultrafine and submicron fine ambient particles: Heme oxygenase-1 as an indicator of PM-mediated allergic inflammation, J Toxicol Environ Health, Part A, vol.78, pp.254-266, 2015.

M. A. Butkus and M. C. Johnson, Reevaluation of Phosphate as a Means of Retarding Lead Transport from Sandy Firing Ranges. Soil Sediment Contam, vol.20, pp.172-187, 2011.

F. Debela, J. M. Arocena, R. W. Thring, and T. Whitcombe, Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pbcontaminated soils

. Chemosphere, , vol.80, pp.450-456, 2010.

R. R. Karna, M. R. Noerpel, T. P. Luxton, and K. G. Scheckel, Point of Zero Charge: Role in Pyromorphite Formation and Bioaccessibility of Lead and Arsenic in PhosphateAmended Soils, Soil Syst, 2018.

A. L. Juhasz, K. G. Scheckel, A. R. Betts, and E. Smith, Predictive capabilities of in vitro assays for estimating Pb relative bioavailability in phosphate amended soils

, Environ Sci Technol, vol.50, pp.13086-13094, 2016.

K. G. Scheckel, J. A. Ryan, D. Allen, and N. V. Lescano, Determining speciation of Pb in phosphate-amended soils: Method limitations, Sci Total Environ, vol.350, pp.261-272, 2005.

K. L. Mercer and J. E. Tobiason, Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO, Environ Sci Technol, vol.42, pp.3797-802, 2008.

A. Davis, M. V. Ruby, and P. D. Bergstrom, Factors controlling lead bioavailability in the Butte mining district, vol.16, pp.147-157, 1994.

M. Ruby, R. Schoof, W. Brattin, M. Goldade, G. Post et al.,

J. Wragg and B. Klinck, The bioaccessibility of lead from Welsh mine waste using a respiratory uptake test, J Environ Sci Health, Part A, vol.42, pp.1223-1231, 2007.

J. Hursh, A. Schraub, E. Sattler, and H. Hofmann, Fate of 212 Pb inhaled by human subjects, Health Phys, vol.16, pp.257-267, 1969.

A. Wells, J. Venn, and M. Heard, Deposition in the lung and uptake to blood of motor exhaust labelled with 203Pb, Inhaled Part, vol.4, pp.175-189, 1975.

J. D. Brain, D. E. Knudson, S. P. Sorokin, and M. A. Davis, Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation, Environ Res, vol.11, pp.13-33, 1976.

M. Geiser and W. G. Kreyling, Deposition and biokinetics of inhaled nanoparticles, Part Fibre Toxicol, vol.7, pp.1-17, 2010.

T. Kyotani and M. Iwatsuki, Determination of water and acid soluble components in atmospheric dust by inductively coupled plasma atomic emission spectrometry, ion chromatography and ion-selective electrode method, Anal Sci, vol.14, pp.741-748, 1998.

J. G. Wallenborn, J. K. Mcgee, M. C. Schladweiler, A. D. Ledbetter, and U. P. Kodavanti, Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats, Toxicol Sci, vol.98, pp.231-239, 2007.

W. G. Kreyling, S. Hirn, W. Mo?ller, C. Schleh, A. Wenk et al., Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size, ACS Nano, vol.8, pp.222-233, 2013.

H. W. Mielke, D. Dugas, P. W. Mielke, K. S. Smith, and C. Gonzales, Associations between soil lead and childhood blood lead in urban New Orleans and rural Lafourche Parish of Louisiana. Environ Health Pers, vol.105, pp.950-954, 1997.

D. Morrison, Q. Lin, S. Wiehe, G. Liu, M. Rosenman et al., Spatial relationships between lead sources and children's blood lead levels in the urban center of Indianapolis (USA), vol.35, pp.171-183, 2013.

, Extended X-ray Absorption Fine Structure (EXAFS) spectroscopic assessment of Pb and Fe in phosphate amended Pb-contaminated soils and post IVBA assay residuals, X-ray fluorescence (XRF) microscopy images of lungs and gastrointestinal (GI) tracts and Pb speciation analysis in lungs using X-ray Absorption Near Edge Spectroscopy (XANES), Figure S1: Standard spectra used for LCF fitting using XANES, Figure S2: (A) Fe IVBA (%) using the Solubility Bioaccessibility Research Consortium (SBRC) assay where SBRC-G = extraction using the gastric phase and SBRC-I, Supporting Information: Details of methodologies (Quality assuarance and quality control of soil and tissue digestion

, IIBA) where IIBA-L = extraction using the lung phase, IIBA-I = extraction using the lung+GI phase. (B) Fe speciation in preand post-IIBA assay residuals, Figure S4: Regions of high and low Pb concentration used to obtain spectra for LCF fitting where (A) unamended and (B) amended samples, Table S1: Change in pH, Pb and P concentration before and after soil amendment, Fe speciation (mg/kg) in the pre-and post-SRBC assay residuals, Figure S3: (A) Fe IVBA (%) using the Inhalation-Ingestion Bioaccessibility Assay