Xart: Discovery of correlated arguments of n-ary relations in text.

Abstract : Here we present the Xart system based on a three-step hybrid method using data mining approaches and syntactic analysis to automatically discover and extract relevant data modeled as n-ary relations in plain text. A n-ary relation links a studied object with its features considered as several arguments. We addressed the challenge of designing a novel method to handle the identification and extraction of het- erogeneous arguments such as symbolic arguments, quantitative arguments composed of numbers and various measurement units. We thus developed the Xart system, which relies on a domain ontology for discovering patterns, in plain text, to identify arguments involved in n-ary relations. The discovered pat- terns take advantage of different ontological levels that facilitate identification of all arguments and pool them in the sought n-ary relation.
Type de document :
Article dans une revue
Expert Systems with Applications, Elsevier, 2017, 73, pp.115-124. <10.1016/j.eswa.2016.12.028>
Liste complète des métadonnées

https://hal-agroparistech.archives-ouvertes.fr/hal-01508801
Contributeur : Juliette Dibie <>
Soumis le : vendredi 14 avril 2017 - 17:14:03
Dernière modification le : mercredi 19 avril 2017 - 17:36:18

Identifiants

Citation

Soumia Lilia Berrahou, Patrice Buche, Juliette Dibie, Mathieu Roche. Xart: Discovery of correlated arguments of n-ary relations in text.. Expert Systems with Applications, Elsevier, 2017, 73, pp.115-124. <10.1016/j.eswa.2016.12.028>. <hal-01508801>

Partager

Métriques

Consultations de la notice

99