P. Pellett, B. Roizman, and . Herpesviridae, , vol.2, pp.1802-1822, 2013.

I. The and . Report, Virus Taxonomy: The Classification and Nomenclature of Viruses, 2018.

B. Roizman, D. Knipe, and R. J. Whitley, Herpes simplex viruses, 2013.

C. L. Sayers and G. Elliott, Herpes simplex virus 1 enters human keratinocytes by a nectin-1-dependent, rapid plasma membrane fusion pathway that functions at low temperature, J. Virol, vol.90, pp.10379-10389, 2016.
DOI : 10.1128/jvi.01582-16

URL : https://jvi.asm.org/content/90/22/10379.full.pdf

D. Coen and D. Richman, Antiviral agents, vol.1, pp.338-373, 2013.

E. F. Haney, S. C. Mansour, and R. E. Hancock, Antimicrobial peptides: An introduction, Methods Mol. Biol, vol.1548, pp.3-22, 2017.

R. I. Lehrer and T. Ganz, Antimicrobial peptides in mammalian and insect host defence, Curr. Opin. Immunol, vol.11, pp.23-27, 1999.

A. Ladram and P. Nicolas, Antimicrobial peptides from frog skin: Biodiversity and therapeutic promises, Front. Biosci, vol.21, pp.1341-1371, 2016.

Z. Raja, S. André, F. Abbassi, V. Humblot, O. Lequin et al., Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent, PLoS ONE, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517346

S. S. Wilson, M. E. Wiens, and J. Smith, Antiviral mechanisms of human defensins, J. Mol. Biol, vol.425, pp.4965-4980, 2013.

A. Di-nardo, A. Vitiello, and R. L. Gallo, Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide, J. Immunol, vol.170, pp.2274-2278, 2003.

M. Frohm, B. Agerberth, G. Ahangari, M. Ståhle-bäckdahl, S. Lidén et al., The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders, J. Biol. Chem, vol.272, pp.15258-15263, 1997.

A. M. Van-der-does, P. Bergman, B. Agerberth, and L. Lindbom, Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections, J. Leukoc. Biol, vol.92, pp.735-742, 2012.

N. C. Filewod, J. Pistolic, and R. E. Hancock, Low concentrations of LL-37 alter IL-8 production by keratinocytes and bronchial epithelial cells in response to proinflammatory stimuli, FEMS Immunol. Med. Microbiol, vol.56, pp.233-240, 2009.

H. Jenssen, Therapeutic approaches using host defence peptides to tackle herpes virus infections, vol.1, pp.939-964, 2009.

H. Jenssen, T. J. Gutteberg, Ø. Rekdal, and T. Lejon, Prediction of activity, synthesis and biological testing of anti-HSV active peptides, Chem. Biol. Drug Des, vol.68, pp.58-66, 2006.

Y. Lai, S. Adhikarakunnathu, K. Bhardwaj, C. T. Ranjith-kumar, Y. Wen et al., LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs, PLoS ONE, 2011.

E. Sato, K. Hiromatsu, K. Murata, and S. Imafuku, Loss of ATP2A2 allows herpes simplex virus 1 infection of a human epidermis model by disrupting innate immunity and barrier function, J. Investig. Dermatol, vol.138, pp.2540-2549, 2018.

T. Takiguchi, S. Morizane, T. Yamamoto, A. Kajita, K. Ikeda et al., Cathelicidin antimicrobial peptide LL-37 augments interferon-? expression and antiviral activity induced by double-stranded RNA in keratinocytes, Br. J. Dermatol, vol.171, pp.492-498, 2014.

B. Yasin, M. Pang, J. S. Turner, Y. Cho, N. Dinh et al., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides, Eur. J. Clin. Microbiol. Infect. Dis, vol.19, pp.187-194, 2000.

M. E. Marcocci, D. Amatore, S. Villa, B. Casciaro, P. Aimola et al., The amphibian antimicrobial peptide temporin B inhibits in vitro herpes simplex virus type 1 infection, Antimicrob. Agents Chemother, vol.62, pp.2367-2384, 2018.

F. Abbassi, B. Oury, T. Blasco, D. Sereno, G. Bolbach et al., Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica, Peptides, vol.29, pp.1526-1533, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00649680

F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse et al., Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study, Biochemistry, vol.47, pp.10513-10525, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01537179

A. Lombana, Z. Raja, S. Casale, C. M. Pradier, T. Foulon et al., Temporin-SHa peptides grafted on gold surfaces display antibacterial activity, J. Pept. Sci, vol.20, pp.563-569, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01044512

M. Garcia, H. Alout, F. Diop, A. Damour, M. Bengue et al., Innate immune response of primary human keratinocytes to West Nile virus infection and its modulation by mosquito saliva, Front. Cell. Infect. Microbiol, vol.8, p.387, 2018.

S. Burrel, C. Fovet, C. Brunet, L. Ovaguimian, N. Hamm et al., Routine use of duplex real-time PCR assays including a commercial internal control for molecular diagnosis of opportunistic DNA virus infections, J. Virol. Methods, vol.185, pp.136-141, 2012.

M. Hemshekhar, K. Y. Choi, and N. Mookherjee, Host defense peptide LL-37-mediated chemoattractant properties, but not anti-inflammatory cytokine IL-1RA production, is selectively controlled by Cdc42 Rho GTPase via G protein-coupled receptors and JNK mitogen-activated protein kinase, Front. Immunol, vol.9, pp.1-17, 2018.

K. C. Chin and P. Cresswell, Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus, Proc. Natl. Acad. Sci, vol.98, pp.15125-15130, 2001.

L. Espert, G. Degols, C. Gongora, D. Blondel, B. R. Williams et al., ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses, J. Biol. Chem, vol.278, pp.16151-16158, 2003.

V. Fensterl and G. C. Sen, Interferon-induced Ifit proteins: Their role in viral pathogenesis, J. Virol, vol.89, pp.2462-2468, 2015.

R. J. Lin, H. P. Yu, B. L. Chang, W. C. Tang, C. L. Liao et al., Distinct antiviral roles for human 2 ,5 -oligoadenylate synthetase family members against dengue virus infection, J. Immunol, vol.183, pp.8035-8043, 2009.

S. Schmid, M. Mordstein, G. Kochs, A. Garcia-sastre, and B. R. Tenoever, Transcription factor redundancy ensures induction of the antiviral state, J. Biol. Chem, vol.285, pp.42013-42022, 2010.

Y. J. Gordon, L. C. Huang, E. G. Romanowski, K. A. Yates, R. J. Proske et al., Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity, Curr. Eye Res, vol.30, pp.385-394, 2005.

A. Di-grazi, V. Luca, L. A. Segev-zarko, Y. Shai, and M. L. Mangoni, Temporins a and b stimulate migration of hacat keratinocytes and kill intracellular Staphylococcus aureus, Antimicrob. Agents Chemother, vol.58, pp.2520-2527, 2014.

M. L. Mangoni, J. M. Saugar, M. Dellisanti, D. Barra, M. Simmaco et al., Temporins, small antimicrobial peptides with leishmanicidal activity, J. Biol. Chem, vol.280, pp.984-990, 2005.

A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra et al., Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles, Biochem. Biophys. Res. Commun, vol.368, pp.91-100, 2002.

M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni et al., Temporins, antimicrobial peptides from the European red frog Rana temporaria, Eur. J. Biochem, vol.242, pp.788-792, 1996.

D. Uccelletti, E. Zanni, L. Marcellini, C. Palleschi, D. Barra et al., Anti-pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: A plausible mode of action in vitro and in vivo, Antimicrob. Agents Chemother, vol.54, pp.3853-3860, 2010.

R. S. Noyce, S. E. Collins, and K. L. Mossman, Identification of a novel pathway essential for the immediate-early, interferon-independent antiviral response to enveloped virions, J. Virol, vol.80, pp.226-235, 2006.

J. W. Schoggins and C. M. Rice, Interferon-stimulated genes and their antiviral effector functions, Curr. Opin. Virol, vol.1, pp.519-525, 2011.

P. Paladino, D. T. Cummings, R. S. Noyce, and K. L. Mossman, The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I, J. Immunol, vol.177, pp.8008-8016, 2006.

D. C. Brice, Z. Toth, and G. Diamond, LL-37 disrupts the Kaposi's sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells, Antiviral Res, vol.158, pp.25-33, 2018.

S. M. Currie, E. Findlay, A. J. Mcfarlane, P. M. Fitch, B. Böttcher et al., Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans, J. Immunol, vol.196, pp.2699-2710, 2016.

D. Kim, N. Soundrarajan, J. Lee, H. S. Cho, M. Choi et al., Genomewide analysis of the antimicrobial peptides in Python bivittatus and characterization of cathelicidins with potent antimicrobial activity and low cytotoxicity, Antimicrob. Agents Chemother, vol.61, pp.530-547, 2017.