F. Allen, L. Crepaldi, C. Alsinet, A. J. Strong, V. Kleshchevnikov et al., Predicting the mutations generated by repair of Cas9-induced double-strand breaks, Nat Biotechnol, 2018.

A. V. Anzalone, P. B. Randolph, J. R. Davis, A. A. Sousa, L. W. Koblan et al., Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, vol.576, issue.7785, pp.149-157, 2019.

P. Billon, E. E. Bryant, S. A. Joseph, T. S. Nambiar, S. B. Hayward et al., CRISPR-Mediated Base editing enables efficient disruption of eukaryotic genes through induction of STOP codons, Mol Cell, vol.67, p.1064, 2017.

A. Charrier, E. Vergne, N. Dousset, A. Richer, A. Petiteau et al., Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system, Front Plant Sci, vol.10, p.40, 2019.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.

I. Es, M. Gavahian, F. J. Marti-quijal, J. M. Lorenzo, M. Khaneghah et al., The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges, Biotechnol Adv, vol.37, pp.410-421, 2019.

K. Hua, X. Tao, and J. K. Zhu, Expanding the base editing scope in rice by using Cas9 variants, Plant Biotechnol J, vol.17, pp.499-504, 2019.

M. Jiang, H. Hu, J. Kai, M. B. Traw, S. Yang et al., Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes, Plant Mol Biol, vol.100, pp.467-479, 2019.

S. Jin, Y. Zong, Q. Gao, Z. Zhu, Y. Wang et al., Cytosine, but not adenine, base editors induce genome-wide offtarget mutations in rice, Science, vol.364, pp.292-295, 2019.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

D. Kim, J. Kim, J. K. Hur, K. W. Been, S. H. Yoon et al., Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells, Nat Biotechnol, vol.34, pp.863-868, 2016.

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, vol.533, pp.420-424, 2016.

K. Lee, Y. Zhang, B. P. Kleinstiver, J. A. Guo, M. J. Aryee et al., Activities and specificities of CRISPR/ Cas9 and Cas12a nucleases for targeted mutagenesis in maize, Plant Biotechnol J, vol.17, pp.362-372, 2019.

Z. H. Lemmon, N. T. Reem, J. Dalrymple, S. Soyk, K. E. Swartwood et al., Rapid improvement of domestication traits in an orphan crop by genome editing, Nat Plants, vol.4, pp.766-770, 2018.

B. R. Lemos, A. C. Kaplan, J. E. Bae, A. E. Ferrazzoli, J. Kuo et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles, Proc Natl Acad Sci U S A, vol.115, pp.2040-2047, 2018.

J. Li, H. Manghwar, L. Sun, P. Wang, G. Wang et al., Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants, Plant Biotechnol J, vol.17, pp.858-868, 2019.

S. Li, X. Zhang, W. Wang, X. Guo, Z. Wu et al., Expanding the scope of CRISPR/Cpf1-mediated genome editing in Rice, Mol Plant, vol.11, pp.995-998, 2018.

Y. Lu and J. K. Zhu, Precise editing of a Target Base in the Rice genome using a modified CRISPR/Cas9 system, Mol Plant, vol.10, pp.523-525, 2017.

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen et al., A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol Plant, vol.8, pp.1274-1284, 2015.

P. Mali, K. M. Esvelt, and G. M. Church, Cas9 as a versatile tool for engineering biology, Nat Methods, vol.10, pp.957-963, 2013.

J. Miao, D. Guo, J. Zhang, Q. Huang, G. Qin et al., Targeted mutagenesis in rice using CRISPR-Cas system, Cell Res, vol.23, pp.1233-1236, 2013.

H. O'geen, A. S. Yu, and D. J. Segal, How specific is CRISPR/Cas9 really?, Curr Opin Chem Biol, vol.29, pp.72-78, 2015.

R. Oliva, C. Ji, G. Atienza-grande, J. C. Huguet-tapia, A. Perez-quintero et al., Broad-spectrum resistance to bacterial blight in rice using genome editing, Nat Biotechnol, vol.37, pp.1344-1350, 2019.

G. Qin, H. Gu, L. Ma, Y. Peng, X. W. Deng et al., Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis, Cell Res, vol.17, pp.471-482, 2007.

O. Raitskin, C. Schudoma, A. West, and N. J. Patron, Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: an expanded toolkit for precision genome engineering, PLoS One, vol.14, p.211598, 2019.

D. Rodriguez-leal, Z. H. Lemmon, J. Man, M. E. Bartlett, and Z. B. Lippman, Engineering quantitative trait variation for crop improvement by genome editing, Cell, vol.171, p.478, 2017.

C. Sallaud, C. Gay, P. Larmande, M. Bes, P. Piffanelli et al., High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics, Plant J, vol.39, pp.450-464, 2004.

X. Tang, G. Liu, J. Zhou, Q. Ren, Q. You et al., A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice, 2018.

, Genome Biol, vol.19, p.84

X. Tang, L. G. Lowder, T. Zhang, A. A. Malzahn, X. Zheng et al., A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants, Nat Plants, vol.3, p.17018, 2017.

S. Q. Tsai and J. K. Joung, Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases, Nat Rev Genet, vol.17, pp.300-312, 2016.

F. M. Wilson, K. Harrison, A. D. Armitage, A. J. Simkin, and R. J. Harrison, CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry, Plant Methods, vol.15, p.45, 2019.

R. Xu, R. Qin, H. Li, D. Li, L. Li et al., Generation of targeted mutant rice using a CRISPR-Cpf1 system, Plant Biotechnol J, vol.15, pp.713-717, 2017.

F. Yan, Y. Kuang, B. Ren, J. Wang, D. Zhang et al., Highly efficient a. T to G. C Base editing by Cas9n-guided tRNA adenosine Deaminase in Rice, Mol Plant, vol.11, pp.631-634, 2018.

J. Young, G. Zastrow-hayes, S. Deschamps, S. Svitashev, M. Zaremba et al., CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement, Sci Rep, vol.9, p.6729, 2019.

B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, vol.163, pp.759-771, 2015.

Q. Zhang, H. L. Xing, Z. P. Wang, H. Y. Zhang, F. Yang et al., Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention, Plant Mol Biol, vol.96, pp.445-456, 2018.

J. Zhou, X. Xin, Y. He, H. Chen, Q. Li et al., Multiplex QTL editing of grain-related genes improves yield in elite rice varieties, Plant Cell Rep, vol.38, pp.475-485, 2019.

Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat Biotechnol, vol.35, pp.438-440, 2017.

A. Zsogon, T. Cermak, E. R. Naves, M. M. Notini, K. H. Edel et al., De novo domestication of wild tomato using genome editing, Nat Biotechnol, 2018.

E. Zuo, Y. Sun, W. Wei, T. Yuan, Y. W. Sun et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos, Science, vol.364, pp.289-292, 2019.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations